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Abstract
The symmetry groups of double-wall carbon nanotubes (DWCNs) are the line
and point groups for the commensurate and incommensurate walls, respectively.
For the tubes with diameters between 2.8 Å and 50 Å all possible DWCNs
are found. Among them all the 318 commensurate DWCNs are singled
out and their symmetry groups are calculated. DWCNs are low symmetry
objects with respect to the constituent single-wall tubes, and this symmetry
reduction is described by the symmetry breaking groups. Both symmetry and
symmetry breaking groups affect the physical properties of the DWCNs. While,
e.g., quantum numbers and selection rules are related to the symmetry group,
the low interaction between the walls is determined by the breaking group.

PACS numbers: 61.46.+w, 78.67.Ch, 73.63.Fg

1. Introduction

After the first discovery of carbon nanotubes [1] great interest, both experimental and
theoretical, was shown in such materials. The theory of single-wall carbon nanotubes
(SWCNs) developed rapidly, since from the very beginning it was facilitated by the high
SWCN symmetry [2, 3]. On the other hand, coaxial multishell structures are more complicated
for theoretical studies, which emphasizes the necessity of establishing and applying their
symmetry. To the best knowledge of the authors, the single step in this direction [3] has been
a quite general study of the possible symmetries of double-wall carbon nanotubes (DWCNs).
Here we complete this task by the classification of the symmetries of all the commensurate
DWCNs (CDWCN).

Each SWCN (n1, n2) is a quasi-1D crystal, meaning that its symmetry group is a line
(also called monoperiodic or rod) group. If n1 = n2 the tube is called armchair (A), if n2 = 0
it is zigzag (Z) and all other cases are known as chiral (C). The chiral and achiral tubes have
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symmetries of different types, described by the line groups [3]:

LC = T r
q(a)Dn = Lqp22 LZA = T 1

2n(a)Dnh = L2nn/mcm. (1)

Here, T r
q(a) is the helical group generated by

(
Cr

q

∣∣na/q
)
, while Dn and Dnh are the point

groups: Dn is the group generated by the rotation for 2π/n around the tube (vertical) axis and
the rotation U for π around the perpendicular axis; Dnh in addition contains the horizontal
mirror plane. The involved parameters depend on n1 and n2:

n = GCD(n1, n2) q = 2
(
n2

1 + n1n2 + n2
2

)/
nR a =

√
3
Dπ

nR
(2)

with a0 = 2.461 Å, R = GCD(2n1 + n2, n1 + 2n2)/n, the tube diameter is D = n
π

√
q̃R
2 a0,

while r is a more complicated function of n1 and n2 [3]. The corresponding isogonal point
groups are Dq for the chiral tubes, and D2nh for the zigzag and armchair tubes. It is useful to
note that q̃ = q/n is an integer such that

q̃ = 2 (mod 12). (3)

We use the suitable SWCN reference frame: the z-axis is the tube axis and the x-axis
passes through the centre of one of the carbon hexagons. Since each atom of SWCN is obtained
as a map of an arbitrary atom C000 by the symmetry transformations �tsu = (

Cr
q

∣∣na/q
)t

Cs
nU

u

(t = 0,±1, . . . , s = 0, . . . , n − 1 and u = 0, 1), in this frame the cylindrical coordinates
rtsu = (D/2, ϕtsu, ztsu) of the atom Ctsu = �tsu C000 are

rtsu =
(

D

2
, (−1)uϕ000 + 2π

(
tr

q
+

s

n

)
, (−1)uz000 + t

n

q
a

)
(4)

with ϕ000 = n1 + n2
πD2 a2

0 , z000 = n1 − n2

2
√

3πD
a2

0 (note that r is missing in [3]). The spatial inversion I
changes the signs of ϕtsu and ztsu. It leaves the achiral tubes invariant, being an element of
LZA. In contrast, the chiral tube (n1, n2) is transformed into the different tube (n2, n1). As
their physical properties are neatly related (e.g. same energy spectra, opposite optical activity),
only right optical isomers, n1 � n2, are considered. The line groups of the left and right chiral
tubes are conjugated by I: if � is a symmetry of (n1, n2), then I�I is a symmetry of (n2, n1).
Therefore, the left and the right groups (1) are isomorphic, with common q, n and a, while the
helicity parameters are related by rright + rleft = q.

Double-wall tube will be denoted by W@W′, where W = (n1, n2) and W′ = (n′
1, n

′
2)

are the inner and outer coaxially arranged SWCN walls. The interwall distance corresponds
roughly [4] to the graphite interlayer distance � = 3.44 Å. The spatial inversion applied
to the DWCN (n1, n2)@(n′

1, n
′
2) gives (n2, n1)@(n′

2, n
′
1). On the other hand, the tube

(n1, n2)@(n′
2, n

′
1) must be independently considered. Therefore, in the study of DWCNs,

one has to include both right and left SWCN isomers.
We studied a sample of 318 CDWCNs obtained as follows. At first, we consider all

SWCNs with the diameters 2.8 Å � D � 50 Å and right chirality. Altogether there are 1280
of them. Each such tube is taken as an interior wall, and we searched for possible outer tubes:
their diameters D′ must be such that the interlayer distance (D′ − D)/2 differs from � by at
most 0.2 Å. There are 42 236 such pairs, but only 240 (about half a per cent!) of them are
with commensurate walls. Among them only for 78 CDWCNs are both walls chiral, and their
right–left counterparts are to be included independently. This makes a considered sample
of 318 CDWCNs. Note that among the selected 1280 SWCNs only 207 (out of which 98
are chiral) have a commensurate pair within the chosen diameter range and allowed interwall
distance.

The paper is organized as follows. In section 2 we interrelate the Abelian roto-translational
parts of the symmetry groups of CDWCNs and their layers. We also introduce another group,
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describing the symmetry breaking due to the interaction of the walls. Assuming that the walls
are coaxial, these two groups are not dependent on the other details of the relative position of
the shells. Then in section 3 we discuss the parities (U-axes, vertical mirror and glide planes,
horizontal mirror and roto-reflection planes) which remain symmetries of a CDWCN only in
the special relative positions of the walls. Topological arguments point out that some of these
special positions should be stable. Finally, we use a specially suited potential for the interlayer
interaction [5] to find the stable position and the total symmetry group. In section 4 we analyse
CDWCNs with diameters between 2.8 Å and 50 Å. Finally, comments and conclusions are
given in section 5.

2. Roto-translational symmetry of CDWCNs

A symmetry of a DWCN W@W′ is any geometrical transformation leaving both walls
invariant. Therefore the symmetry group of a DWCN is the intersection LWW′ = LW ∩ LW′

of the groups of the walls. This group depends on the relative position of the walls: even when
they are coaxial, there are special high symmetry positions. Nevertheless, this refers only to
the parities, while the roto-translational symmetries are the same for all coaxial positions.

2.1. Roto-translational subgroup

Each line group has a subgroup L(1) = T r
q(a)Cn containing all roto-translational elements.

Being generated by
(
Cr

q

∣∣na/q
)

and Cn this group is Abelian. Moreover, for any two coaxial
tubes their roto-translational symmetries mutually commute. For the chiral and achiral
SWCNs, L(1) is an index-2 and an index-4 subgroup of their symmetry groups, respectively.

Obviously, like the full symmetry group, the roto-translational subgroup of a DWCN
is the intersection of the walls’ symmetry group. A commensurate double-wall tube, being
periodical along the tube axis, is a quasi-1D crystal. Thus, for CDWCNs L(1)

WW′ is a line group:

L(1)

WW′ = T R
Q(A)CN = L(1)

W ∩ L(1)
W′ . (5)

The parameters Q,R,N and A are functions of the parameters of the walls. The translational
period A is the minimal integer multiple of a and a′; it defines co-primes â and â′ such that
A = â′a = âa′.

For further purposes here we show that R = R′ for two commensurate SWCNs, W and
W′. Indeed, according to (2), a = a0

√
3q̃/2R, and therefore a/a′ = √

q̃R′/q̃ ′R. When
R �= R′ there appears a factor of 3; due to (3) it can be cancelled neither by q̃ nor by q̃ ′;
thus, a/a′ is irrational. Therefore, for CDWCNs a/a′ = √

q̃/q̃ ′; cancelling GCD(q̃, q̃ ′) on
the right, one gets that a/a′ is a square root of the ratio of the co-primes q̃/GCD(q̃, q̃ ′) and
q̃ ′/GCD(q̃, q̃ ′). This is possible if and only if

â =
√

q̃/GCD(q̃, q̃ ′) â′ =
√

q̃ ′/GCD(q̃, q̃ ′). (6)

These results are used in the following theorem giving the roto-translational part of the
commensurate DWCN symmetry group (for the proof, see appendix A):

Theorem 1. The roto-translational group of CDWCN is the line group L(1)

WW′ with

N = GCD(n, n′) Q = NGCD

(
râ′ n

′

N
− r ′â

n

N
,
√

q̃q̃ ′
)

A = â′a = âa′. (7)

The helicity parameter R is determined by the integer R0 = (
râτ + q

n
s0

)
Q/q with

τ = √
q̃q̃ ′/GCD

(
râ′ n′

N
− r ′â n

N
,
√

q̃q̃ ′) and s0 = τ(râq ′ − r ′â′q)(n̂φ(n̂′) − 1)/n′q̃q̃ ′ (here, φ

is the Euler function): then R = R0 + jQ/N where j is the minimal non-negative integer for
which R and Q are the co-primes (recall that q̃ = q/n, and q̃ ′ = q ′/n′).
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2.2. Breaking group

The interaction potential between the walls is V (R,R′) = ∑
ij v(ri , r

′
j ), where v(ri , r

′
j ) are

couplings of the atoms of the inner and the outer walls; here R = {ri} and R′ = {r′
i} are the

sets of all the atomic positions. This potential is invariant under the transformations generated
by all the symmetries of both walls: ��′V (R,R′) = V (��′R, ��′R′) for each � ∈ LW and
�′ ∈ LW′ . Among them, only the transformations from the intersection LW ∩ LW′ leave both
walls invariant. All other transformations change the relative position of the walls, despite the
invariance of the potential. Therefore, the symmetry of the potential is the group L× generated
by both LW and LW′ . It appears that the interaction itself imposes the symmetry breaking
from the product LW × LW′ of the noninteracting systems to LWW′ .

Particularly, the roto-translational symmetries form Abelian and mutually commutative
groups L(1)

W and L(1)
W′ . Therefore, their product L(1)

W ×L(1)
W′ has L(1)

WW′ as an invariant subgroup.

The group L(1)
× generated by all roto-translational symmetries of both walls is the Abelian

factor group L(1)
× = L(1)

W × L(1)
W′

/
L(1)

WW′ . Analogously to L(1)

WW′ , this group does not depend on
the relative position of the walls. It is the first family line group characterized by the following
theorem.

Theorem 2. The symmetry breaking group of a CDWCN is the line group

L(1)
× = T

R×
Q×(A×)CN× (8)

with parameters N×,Q×, A× and R× given by

N× = LCM(n, n′)
√

q̃q̃ ′

GCD(râ′n′/N − r ′ân/N,
√

q̃q̃ ′)
Q× = LCM(q, q ′) (9)

A× = aa′GCD(râ′n′/N − r ′ân/N,
√

q̃q̃ ′)
A GCD(q, q ′)

(10)

qq ′R×
LCM(q, q ′)

= (râ′q ′ − r ′âq)âφ(â′) + r ′qâ

ââ′ (mod GCD(Nq̃q̃ ′, râ′q ′ − r ′âq)). (11)

By convention, R× is the unique solution of the last equation which is less than Q× and
co-prime to Q× (proof is given in appendix A).

As has been stressed, the breaking group describes the maximal symmetry of the
interaction potential. Since the walls’ symmetry groups are much larger than the symmetry
of the DWCN, the breaking group is very large. This holds also for the roto-translational part
L(1)

× , and implies that the interaction potential has very fine periodicity along and around the
z-axis, i.e. small periods A× and 2π/N×.

3. Stable positions and full symmetry

Although the walls of a DWCN are coaxial, meaning that the z- and the z′-axes coincide, the
x- and x ′-axes may differ. Let the x ′-axis be obtained from the x-axis by rotation (around
the z-axis) by � and translation (along the z-axis) by Z. Then � and Z completely determine
the relative position of the walls. Thus, in the inner wall coordinate system, the atomic
coordinates of the outer wall W′ are

r′
tsu =

(
D′

2
, (−1)uϕ′

000 + 2π

(
tr ′

q ′ +
s

n′

)
+ �, (−1)uz′

000 + t
n′

q ′ a
′ + Z

)
. (12)
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3.1. Parities

Additional symmetries (here we shall call them parities) are elements of the full DWCN
symmetry group only in the special relative positions (�,Z) at which horizontal axes and (in
the achiral pairs) mirror, glide or roto-reflection planes coincide.

Let us begin with the U-axis parity. Denoting the U-axis which coincides with the x-axis
by U00, the other U-axes are Uts = (

Cr
q

∣∣na/q
)t

Cs
nU00. Their directions are defined in the

cylindrical coordinates by (ϕts, zts) = (π(rt + q̃s)/q, nat/2q). Since q̃ is even and r odd,
there are two classes of U-axes: Ue and Uo (i.e. the axes with even and odd t). All the Uo

axes on both their sides bisect the carbon bonds. Nevertheless, for odd n (such a wall will
be referred to as an odd wall) each Ue-axis at one side comes through the centre of a carbon
hexagon and bisects a bond on the other side. For n even (even wall), there are two types
of Ue-axes, Uee and Ueo, corresponding to even and odd s: Uee passes through the centres of
hexagons, and Ueo bisects the bonds.

In the achiral cases q = 2n and the Uts-axis is positioned at (ϕts, zts) = (πt/2n +
πs/n, at/4). The Ue-axes are the intersections of the vertical and horizontal mirror planes
(σve and σhe), while the Uo-axes are the intersections of the vertical glide planes with the
horizontal roto-reflection planes (σvo and σho).

Thus, the coincidence of the axes in (ϕ, z) and (ϕ′, z′) is realized by the relative position
of the walls (�,Z) with � = ϕts −ϕ′

t ′s ′ and Z = zts −z′
t ′s ′ . It enlarges the symmetry group by

a factor of 2, giving the fifth family line group T R
Q(A)DN . When both walls are achiral, the

coincidence of the U-axes implies the coincidence of some of the symmetry planes: vertical
(horizontal) mirror planes with either a mirror or a glide (roto-reflection) plane. In all these
cases different groups are obtained [3], but all of them are four times larger than the pure roto-
translational group. Also, it is possible to get a symmetry plane even without coincidental
U-axes in which case the symmetry is enlarged by a factor of 2 [3].

Without specifying the interaction potential the stable relative position of the walls cannot
be predicted. Nevertheless, the topological analysis of the symmetry breaking [6] shows that
the extreme points of the invariant functions are on the peripheral strata. This means that
the extremes of the interaction will be achieved in the positions with maximal symmetry;
particularly this refers to the stable configurations (corresponding to the interaction potential
minima).

3.2. Potential and stable configurations

As has been discussed above, to determine the symmetry groups of CDWCNs one has to use
the interatomic pairwise potential v(r, r′). We take the potential [5] of Lennard-Jones type
with the coefficients fitted numerically to the experimental data,

v(rtsu, r
′
t ′s ′u′) = − 18.5426

|rtsu − r′
t ′s ′u′ |6 +

29 000.4

|rtsu − r′
t ′s ′u′ |12

(13)

to calculate the potential

V (�,Z) =
∑
tsu

∑
t ′s ′u′

v(rtsu, r
′
t ′s ′u′). (14)

The atomic positions are given by (4) and (12). As has been discussed, this potential is
invariant under the breaking group L(1)

× , independently of the relative position of the walls.
Since rotational and translational periods of this group are 2π/N× and A×, it suffices to scan
only the part � ∈ [0, 2π/N×)Z ∈ [0, A×) of the (�,Z)-cylinder in order to determine the
stable positions as the minima of the potential.
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Figure 1. CDWCNs (4,1)@(3,12) (left) and (4,1)@(12,3) (right). The tubes are unfolded, i.e.
horizontal and vertical axes are ϕ and z coordinates. The inner tube, (4, 1), is depicted in black,
while the outer ones are grey. The outer tubes chiral angle θout is indicated. Sign ⊗ at the centre
highlights the twofold horizontal axis U.

We have performed numerical calculations for the sample of 318 CDWCNs, described in
section 1. The results agree with the topological predictions: the single global minimum
coincides with one of the highest symmetry positions. Namely, whenever at least one
wall is chiral, the minimum is at (�,Z) = (0, 0), and the U00- and U ′

00-axes coincide, see
figure 1.

As for the pair of achiral walls, since Z and A tubes are incommensurate, only pairs ZZ
and AA are considered. The interlayer distance of approximately 3.44 Å is realized [7] for
ZZn = (n, 0)@(n + 9, 0) and AAn = (n, n)@(n + 5, n + 5). Since the principal axis order is
odd for at least one wall (as both n and n′ cannot be even), the resulting N is odd. In all these
cases the stable configuration is at Z = A/4, where A = a = a′ is the period of the DWCN:
the walls are mutually shifted by A/4, resulting in the coincidence of the horizontal mirror
plane of one wall with the roto-reflection plane of the other: σhe = σ ′

ho and σho = σ ′
he. Such a

plane cannot be a common mirror plane. The product C2Nσh generates a common W and W′

roto-reflection plane. Let n be odd and n′ even. Then n/N is odd and the roto-reflection C2Nσh

is equal to the element (C2nσho)
n/N of the symmetry of W. Further, σh itself is a symmetry of

W′, but since n′ is divisible by 2N , also C2N = C
n′/2N

n′ is a W′ symmetry.
In most of the cases � = 0, i.e. in the stable configuration the walls are not twisted.

Therefore, the vertical mirror planes σve containing x- and x ′-axes coincide. As for the U-
axes, due to the vertical shift the only possibility is coincidence of the even axis of one wall
with the odd one of the other. One gets the equations sπ/n = (2s ′ + 1)π/2n′ for U0s = U ′

1s ′

and (2s + 1)π/2n = s ′π/n′ for U1s = U ′
0s ′ . The first one, 2sn′ = (2s ′ + 1)n, is solvable

only for even n (then n′ is odd); one solution is s = n/2 and s ′ = (n′ − 1)/2, giving the axis
perpendicular to the common vertical mirror plane. The other equation is solved analogously
only for even n′. One concludes that Ue = U ′

o for even n, and U ′
e = Uo for odd n, giving the

common U-axis perpendicular to the common vertical mirror plane, figure 2.
The only exceptions are the achiral CDWCs AA5 and ZZ9, where (�,Z) =

(Nπ/2nn′, A/4): in addition to the translational shift for A/4, the outer tube is twisted
for π/N× (i.e. for π/20 and π/36, respectively). The vertical mirror and glide planes of
the inner shell are at angles sπ/n and (2s + 1)π/2n, while at angles s ′π/n′ + Nπ/2nn′ and
(2s ′ + 1)π/2n′ + Nπ/2nn′ in the outer one. The mirror planes do not coincide since the
corresponding equation, N = 2(sn′ − s ′n), has no solution (N is odd). In contrast, a pair
of glide planes satisfies N = 2(sn′ − s ′n) + (n′ − n) and coincide. Finally, the conditions
N = 2(sn′ − s ′n) − n for σve = σ ′

vo and N = 2(sn′ − s ′n) + n′ for σvo = σ ′
ve are fulfilled by a

vertical mirror plane of the odd wall and a glide plane of the even wall, giving a common glide
plane. In the odd wall, the intersection of this plane with the horizontal mirror plane gives the
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Figure 2. CDWCNs ZZ3 (left) and AA5 (right). The tubes are unfolded, i.e. horizontal and
vertical axes represent ϕ and z coordinates. Besides the two-fold horizontal U-axis (⊗), there is
either a vertical mirror plane (σv, solid line, ZZ3) or glide plane ((σv|A/2), dashed line, AA5) at
±π/2, and a horizontal roto-reflection plane (C2Nσh, horizontal dashed line).

U-axis; simultaneously, in the even wall this is the intersection of the horizontal roto-reflection
and vertical glide planes. The obtained common U-axis is again perpendicular to a common
glide plane (see figure 2).

3.3. Symmetry groups

Having at our disposal the stable configurations and the corresponding parities, it is easy to
deduce the full symmetry groups of CDWCNs. The common U-axis in all CDWCNs enlarges
the roto-translational group to T R

Q(A)DN , while in the ZZ and AA there is an additional
mirror or glide plane. The common U-axis is, for convenience, taken as the x-axis, while
the mirror/glide plane is therefore the yz-plane; the glide plane cyclic group generated by
(σvy |A/2) is here denoted by T c. Thus, the line groups of the CDWCN symmetries are

LC = T R
Q(A)DN = LQP 2,LQP 22 (LG family 5) (15)

LAA5 = T c(a0)S10 = L5̄c (LG family 10) (16)

LZZ9 = T c(
√

3a0)S18 = L9̄c (LG family 10) (17)

LZZn
= LAAn

= T (A)DNd = LN̄m (LG family 9). (18)

The group parameters Q,R,N and A are given by theorem 1. In the international notation
P is divisible by N, and P/N = Rφ(Q/N)−1 (mod Q/N) (i.e. P/N and R inverses modulo
Q/N); also, m and c stand for the vertical mirror and glide planes, respectively. The groups
LC correspond to CDWCNs with one chiral wall at least. The isogonal point groups are

P C = DQ P ZZ = PAA = DNd. (19)

4. Sample

As mentioned before, the commensurability of the lattice constants of the layers is a very
restrictive condition. Only a few pairs of chiralities match it. However, many CDWCNs
correspond to the same pair of chiral angles as many of the corresponding SWCN pairs
happen to have the required diameter difference. Therefore, the CDWCNs can be grouped
within series, which we call rays. Also, frequently the same SWCN appears as the inner of
one, and the outer wall of another CDWCN. The symmetry group of CDWCNs is changed



10356 M Damnjanović et al

Table 1. Rays containing five or more CDWCNs with the inner wall diameter 2.8 Å � D � 50 Å.
The CDWCNs in each ray (given in the first column) are obtained for the values of the parameter
z given in the fourth column (the values in parentheses should be omitted). The corresponding
line groups and isogonal point groups are given in the second and third columns, respectively.
The last column gives the number of found CDWCNs. The table describes 223 of 318 CDWCNs
altogether. The translational period is given in units of a0.

CDWCN ray Line group Isogonal z values No

(2 + 7z)(1, 1)@(1 + z)(11, 2)

(1 + z)(11, 2)@(12 + 7z)(1, 1)
T (7)D1 D1 0, 1, 2, 3

4

4

T (7)D5 D5 4
1

1
(5 + 7z)(1, 0)@(2 + z)(5, 3)

(1 + z)(5, 3)@(16 + 7z)(1, 0)
T (7

√
3)D1 D1

0, 2, 3, 5, 6, 8

0, 1, 3, 4, 6, 7

6

6

T (7
√

3)D3 D3
1, 4

2, 5

2

2

T (7
√

3)D9 D9
7

8

1

1
(4 + 13z)(1, 0)@(1 + z)(8, 7)

(1 + z)(8, 7)@(22 + 13z)(1, 0)
T (13

√
3)D1 D1

0, 1, 3, 4
0, 1, 3

4

3

T (13
√

3)D3 D3
2
2

1

1

z(1, 0)@(z + 9)(1, 0) T (
√

3)D1d D1d
4, 5, . . . , 62
(6, 9, 12, . . . , 60)

40

T (
√

3)D3d D3d
6, 9, 12, . . . , 60
(9, 18, . . . 54)

13

T (
√

3)D9d D9d 18, 27 . . . , 63 6

T (
√

3)TcS18 9 1

z(1, 1)@(z + 5)(1, 1) T (1)D1d D1d
2, 3, . . . , 36 (5, 10,

15, 20, 25, 30, 35)
29

Tc(1)S10 D5d 5 1
T (1)D5d 10, 15, . . . , 35 6

z(3, 2)@(2 + z)(3, 2)

z(3, 2)@(2 + z)(2, 3)
T 1

2 (
√

57)D1 D2 1, 3, . . . , 13 14

T (
√

57)D2 2, 4, . . . , 14 14

z(4, 1)@(2 + z)(4, 1)

z(4, 1)@(2 + z)(1, 4)
T 1

2 (
√

7)D1 D2
1, 3, . . . , 13
1, 3, . . . , 11

7

6

T (
√

7)D2
2, 4, . . . , 12
2, 4, . . . , 12 (6)

6

5

T 3
14(

√
7)D1 D14

–
13

0

1

T 13
14 (

√
7)D2

–
6

0

1
z(7, 3)@(1 + z)(7, 3)

z(7, 3)@(1 + z)(3, 7)
T (

√
237)D1 D1 1, 2, . . . , 7 14

z(8, 1)@(1 + z)(8, 1)

z(8, 1)@(1 + z)(1, 8)
T (

√
219)D1 D1 1, 2, . . . , 7 14

regularly within a ray; particularly, the translational periods of all tubes in a ray are same.
Such rays, with more than six CDWCNs (altogether 223 CDWCNs) are presented in table 1.
Thus, we firstly introduce precisely the CDWCN rays.
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Let (n1, n2) and (n′
1, n

′
2) be the walls of a CDWCN. The minimal SWCNs with the same

chiral angle are (n̂1, n̂2) and (n̂′
1, n̂

′
2), where n̂i = ni/n (i = 1, 2) are co-primes, as well as

n̂′
i = n′

i/n′. The CDWCN walls may be written as n(n̂1, n̂2) and n′(n̂′
1, n̂

′
2). According to (2),

the ratio of the CDWCN wall diameters is rational: D/D′ = an/a′n′; thus, the diameters of the
minimal walls are proportional to the walls’ periods, (D/n)/(D′/n′) = a/a′ = â/â′, with the
co-primes â and â′ given by (6). It is easy to show that m(n̂1, n̂2)@m′(n̂′

1, n̂
′
2) is a CDWCN

with the same interlayer distance as n(n̂1, n̂2)@n(n̂′
1, n̂

′
2) only if m′ = n′ + (m − n)â/â′.

Therefore, CDWCNs are grouped in the series

m = n + zâ′ m′ = n′ + zâ z = 0, 1, 2, . . . . (20)

Particularly, if both walls have the same chiral angles, i.e. CDWCN walls are the same
minimal tube (n̂1, n̂2) multiplied by n and n′ = n + ν, this tube n(n̂1, n̂2)@(n + ν)(n̂1, n̂2) will
be denoted by (n̂1, n̂2)n@(n + ν), and its right–left counterpart by (n̂2, n̂1)n@(n + ν). In such
a case â = â′ = 1 and according to (20), (n̂1, n̂2)n@(n + ν) is a CDWCN for each n. Such
rays are very frequent, and include more than half of all CDWCNs. In our sample, besides
60 zigzag (1, 0)n@(n + 9) and 35 armchair (1, 1)n@(n + 5) there are 41 chiral right–right
CDWCNs (and the same number of right–left ones): 14 (3, 2)n@(n + 2), 13 (4, 1)n@(n + 2),
seven (7, 3)n@(n + 1) and seven (8, 1)n@(n + 1).

Also the achiral commensurate tubes with interlayer distance closest to 3.44 Å form a ZZ
ray (1, 0)n@(n + 9) (with � = 3.53 Å) and an AA ray (1, 1)n@(n + 5) (with � = 3.39 Å).
These rays are the most frequent CDWCNs: in our sample they are represented by 60 and
35 tubes, respectively. For all such tubes N is odd: N = 1, 3, 9 in ZZ and N = 1, 5 in
AA. Further, a = a′ = A and therefore â = â′ = 1, and since for any achiral SWCN
q̃ = 2 and r = 1, one finds Q = N . This means that their roto-translational subgroup is
symmorphic: L(1) = TCN . Nevertheless, due to the glide planes, the tenth family groups
are non-symmorphic. The roto-translational breaking groups for the tubes ZZ and AA are
L(1)

×A = T (a/2)C2nn′/N .
It turns out that when at least one layer is achiral the roto-translational symmetry group

of a double-wall tube is symmorphic. Besides ZZ and AA, there are 67 CDWCNs with
one achiral wall and the other one chiral. From the remaining 156 CC CDWCNs (78 right–
right and right–left), an additional 99 are with symmorphic symmetry. Thus, altogether there
are only 60 tubes with non-symmorphic symmetry: besides AA5 and ZZ9, there are 57
CC with non-symmorphic roto-translational subgroup. Each of these CC tubes has a layer
of one of the following four types: n(3, 2), n(2, 3), n(4, 1) or n(1, 4). The right–right and
right–left configurations of CC tubes may be either both symmorphic, either one symmorphic
and the other non-symmorphic, but both right–left pairs cannot be non-symmorphic. In
fact, 28 right–right and 29 right–left are with non-symmorphic symmetry. As for CC
CDWCNs, besides the symmorphic groups T (A)DN for N = 1, 2, 3, 5, 9 (international
notation LN2 for odd N and L222 for N = 2), there appear only T 1

2(A)D1 = L2122
(53 CDWCNs), T 3

14(A)D1 = L14522 ((43, 25)@(60, 15), (47, 20)@(60, 15), both with
A = 13

√
7a0 and (52, 13)@(15, 60) with A = √

7a0) and T 13
14(A)D2 = L14622 (in

(24, 6)@(8, 32)).
There is no pure rotational symmetry (N = 1) in 243 cases. The twofold principal

axis appears in 18 right and 18 left CC tubes. The higher rotational symmetry is related
to the achiral walls: N = 3 for 13 ZZ and 8 CZ; N = 5 for 7 AA and 2 CA
((30, 30)@(55, 10) and (55, 10)@(40, 40)); N = 9 in 7 ZZ and 2 CZ ((54, 0)@(45, 27)

and (45, 27@(72, 0)) CDWCNs. The order of the isogonal group rotational axis takes on the
values Q = 1, 2, 3, 5, 9, 14, appearing in 187, 88, 21, 9, 9 and 4 CDWCNs, respectively. It is
equal to N in the case of the symmorphic roto-translational groups.
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5. Discussion

Commensurate tubes are found to be very rare among possible DWCNs: in the considered
sample they make only 0.5%. Their symmetry groups are determined in two steps. Firstly,
assuming that the walls are coaxially arranged SWCNs, the roto-translational part is found with
the help of theorem 1. The various coaxial relative positions, parametrized by two coordinates
� and Z, have different symmetry groups, and according to the profound topological
principles, one of the maximally symmetric positions should be stable. Calculations with
the Lennard-Jones interatomic potential confirm this prediction, and within this model the
full symmetry groups are determined. These are the fifth family groups T R

Q(A)DN if at least
one shell is a chiral SWCN, while if both walls are achiral the groups are either T (A)DN

or T c(A)S2N .
Although the results are derived for the double-wall tubes, they are also valid for the

multiwall ones. In fact, due to the negligible interaction of the first and the third shell, the
relative position of the second and the third shell should be the same as in the CDWCN. Thus,
for the rays (n1, n2)n@(n + ν), the next shell can be (n + 2ν)(n1, n2) etc. These multiwall
tubes have the same symmetry group as the CDWCNs. This includes all purely achiral tubes.
Also, for the other types, despite various possible combinations, no new symmetry appears.

It turns out that the symmetry of a CDWCN is very small in comparison with that of the
walls. The tremendous symmetry breaking is described by the breaking group (theorem 2). It
is important that the wall–wall interaction V (�,Z) is invariant under this large group. Here,
this is used to facilitate numerical determination of the stable positions. Further, the potential,
due to the invariance, can be expanded in the breaking group harmonics cos(µM� + ωKZ)

M = 0, 1, 2, . . . , K = 0,±1, . . . . The constants µ and ω depend on the breaking group
parameters: their product is equal to the symmetry breaking rate, which is defined [8, 7]
as Q×/A× (the number of points per unit cell generated from a single point by the roto-
translational part of the line group). Therefore, the harmonics are very rare which results in
the reduction of the interlayer interaction. In the incommensurate cases, where the periodicity
is completely broken, this is manifested as the superslippery relative displacements of the
walls along the DWCN axis.

Another consequence of low symmetry of CDWCNs, i.e. of the large symmetry breaking,
is the small order Q of the principal axis of the isogonal group. This would be manifested in
the Raman and infrared spectra. Namely, when Q is less than 4 (which is the case for 296,
or 93% of the considered CDWCNs), the angular momentum quantum number m is 0 or 1.
Therefore, only the parity selection rules can prevent electronic transitions, leaving roughly
half of the phonon modes active. This is a huge number, in comparison with 14 or 15 Raman
active modes in SWCNs [9]. However, the number of intense Raman peaks is expected to
be similar to that of SWCNs, as the Raman features coming from the shells, due to the low
interlayer interaction, should remain dominant in the DWCN Raman spectra. Further, as the
space inversion is an element of the isogonal point group DNd of ZZ and AA tubes, Raman
and infrared scatterings are due to different vibrational modes.

As CDWCNs are built of the walls characterized by the same R value, the same type walls
are more frequent than mixed type walls: there are 132 CDWCNs with both walls metallic,
the same number with both semiconducting walls, while only 54 are with different types of
walls.

Finally, we point to the lack of chirality of CDWCN symmetry groups. In fact, the
roto-translational groups are self-conjugated with respect to the space inversion if and only if
Q = N, 2N . In other words symmorphic TCN and T 1

2NCN groups are achiral. Only four
CDWCNs, those with Q = 14 (listed above), are chiral in this sense, despite the chirality of
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the wall constituents in most of the CDWCNs. Even in these exceptional cases never are both
left–right pairs chiral.

Appendix A. Proofs of the theorems

First we introduce notation. For two real numbers x and x ′ such that x/x ′ is rational (x and
x ′ are commensurate) we denote by x their greatest common divisor defined as the maximal
real such that x = x̂x and x ′ = x̂ ′x, with co-prime integers x̂ and x̂ ′. With these co-primes
the lowest common multiple x̄ is defined by x̄ = x̂ ′x = x̂x ′ = x̂x̂ ′x. Further, f = na/q and
f ′ = n′a′/q ′ denote the fractional translations in the helical generators. Using (6), it can be
easily shown that f̂ = â′ and f ′ = â which yield ā/f̄ = a/f = √

q̃q̃ ′.

A.1. Proof of theorem 1

Obviously, the common pure rotational and translational subgroups are CN and T (A), where
N = n and A = ā. To find Q, we note that the requirement for the common helical generator(
CR

Q

∣∣F ) = (
Cr

q

∣∣f )t
Cs

n = (
Cr ′

q ′
∣∣f ′)t ′

Cs ′
n′ is fulfilled only for t = f̂ ′τ and t ′ = f̂ τ , which

yields t = âτ and t ′ = â′τ . As the fractional translation is F = NA/Q, it follows that
Q = √

q̃q̃ ′N/τ . The rotational part implies the identity rt/q − r ′t ′/q ′ = s ′/n′ − s/n, which
reduces to

τ(râq ′ − r ′â′q) = q̃q̃ ′N(s ′n̂ − sn̂′). (A.1)

The solution in s and s ′ exists if and only if τ is a multiple of q̃q̃ ′N
GCD(râq ′−r ′â′q,q̃q̃ ′N)

. Since we look

for the maximal value for Q, it follows that τ should be minimal, i.e. τ = q̃q̃ ′N
GCD(râq ′−r ′â′q,q̃q̃ ′N)

.
Then, it is straightforward to find Q using (6). Finally, the condition for the helical
generator gives the equation (râτ + q̃s)/q = R/Q with the unique solution in R such that
GCD(R,Q) = 1; as follows from (A.1), s = τ(râq ′ − r ′â′q)(n̂φ(n̂′) − 1)/n′q̃q̃ ′ (mod n/N).

A.2. Proof of theorem 2

The minimal rotation (combined with a translation) in the group generated by the elements
of both subgroups is by an angle of 2π/q, and therefore Q× = q. Analogously, the
minimal fractional translation is F× = f . Each element from the group L× can be written

as l× = (
Cs

nC
rt
q

∣∣tf )(
Cs ′

n′C
r ′t ′
q ′

∣∣f ′t ′
)
. For the pure rotations the translational part vanishes:

f t + f ′t ′ = 0. As in the proof of theorem 1, this gives t = âτ and t ′ = â′τ , which substituted
into the rotational part of the requirement gives s/n + s ′/n′ + rt/q + r ′t ′/q ′ = 1/N×. Again,
using (6), after some simple algebra one gets Nq̃q̃ ′(n̂′s + n̂s ′) + Nτ

√
q̃q̃ ′(râ′n̂′ − r ′ân̂) =

qq ′/N×. Maximal N× fulfilling this identity is looked for:

N× = qq ′

GCD(qq ′, Nq̃q̃ ′,
√

q̃q̃ ′(râ′n′ − r ′ân))
= LCM(n, n′)

√
qq ′

GCD(
√

q̃q̃ ′, râ′n′/N − r ′ân/N)
.

The fractional translation is now easily found from Q×F× = N×A×, with the help
of the identity LCM(a, a′) = aa′/A. Finally, R× can be found from the equation(
Cs

nC
rt
q

∣∣tf )(
Cs ′

n′C
r ′t ′
q ′

∣∣f ′t ′
) = (

CR
Q×

∣∣F×
)
. Its translation part, f t + f ′t ′ = 1, is solved by

t = âφ(â′)−1 + zâ′ and t ′ = −(âφ(â′) − 1)/â′ − zâ (for any integer z). When substituted into
the rotational part, this yields the following equation in R×:

qq ′R×
LCM(q, q ′)

= (râ′q ′ − r ′âq)âφ(â′) + r ′qâ

ââ′ (mod GCD(Nq̃q̃ ′, râ′q ′ − r ′âq)).

Finally, among the solutions, R× is the unique one being a co-prime to Q×.
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